Tetrahedron Letters No.9, pp. 989-991, 1966. Pergamon Press Ltd. Printed in Great Britain.

SYNTHESIS OF SPHEROIDENE, SPHEROIDENONE, AND "P518" P.S. Manchand and B.C.L. Weedon

Queen Mary College

London, England.

(Received 13 January 1966)

Following our recent synthesis of chloroxanthin (VIII \underline{a})¹, we now report similar confirmation of the structures assigned^{2,3} to three other carotenoids of the photosynthetic bacteria Rhodopseudomonas spheroides.

Treatment of the C_{30} -aldehyde (VI)¹ with the Wittig reagent (VII \underline{b})⁴ gave spheroidene (VIII \underline{b}), m.p. 135-138°; λ_{max} . 485, 454, and 427 mm; ν_{max} . 1080 and 983 cm⁻¹; τ 8.87, 8.41, 8.33, 8.21, 8.10, 8.04, and 6.79, relative intensities ca. 2:2:1:1:1:3:1.

Reaction of methylene triphenylphosphoran with the acid chloride of d-methoxyisobutyric acid⁵ led to the reagent (III) which was condensed with the hydroxy-aldehyde (II).⁶ The product was converted into the phorphoran (V <u>c</u>) which reacted with the C₂₅-aldehyde (IV)¹ to give spheroidenone (VIII <u>c</u>), m.p. 166-167°; λ_{max} .513, 482, and 461 mu; ν_{max} . (CCl₄) 1680, 1600, 1080, and 980 cm⁻¹; τ 8.65, 8.39, 8.33, 8.18, 8.03, and 6.78, relative intensities ca. 2:2:1:1:4:1.

Condensation of (V \underline{c}) with the dialdehyde (I)⁷ gave "P518" (IX. \underline{c}), m.p. 214-218°; λ_{max} .553, 518, and 485 mm; ν_{max} .1665, 1605, 1078, and 985 cm⁻¹; τ 8.67, 8.02, and 6.79, relative intensities ca. 2:3:1.

The three products were shown to be identical with authentic samples of the carotenoids by direct comparison (partly by Dr. S.L. Jensen); their molecular formulae were established by mass spectrometry (Dr. E.S. Waight). Visible light absorption spectra

were determined in light petroleum; infra-red and n.m.r. data in chloroform and deuterochloroform respectively, unless otherwise stated. An alternative synthesis of "P518" has recently been completed by Dr. U. Schwieter(private communication).

The authors thank Hoffmann-La Roche Ltd. for gifts of chemicals, and the D.S.I.R. for a Research Studentship to P.S.M.).

REFERENCES.

- P.S. Manchand and B.C.L. Weedon, Tetrahedron Letters, No. 37, 2603 (1964).
- J.B.Davis, L.M. Jackman, P.T. Siddons, and B.C.L. Weedon, <u>Proc.Chem.Soc.</u>, 261 (1961).
- 3 L.M. Jackman and S.L. Jensen, Acta Chem. Scand., 18, 1403 (1964).
- J.D. Surmatis and A. Ofner, <u>J.Org.Chem.</u>, <u>28</u>, 2735 (1963).
- 5 C. Weizmann, M.Sulzbacher, and E. Bergmann, J. Amer.Chem.Soc., 70, 1153 (1948).
- P.S. Manchand, R. Rüegg, U. Schwieter, P.T. Siddons, and B.C.L. Weedon,.

 J.Chem.Soc., 2019 (1965).
- 7 P. Mildner and B.C.L. Weedon, <u>J.Chem.Soc.</u>, 3294 (1953);

 H.H. Inhoffen, O.Isler, G. won der Bey,
 G. Raspé, P. Zeller, and R. Ahrene,
 <u>Annalen</u>, <u>580</u>, 7 (1953).